

CST 363 Final Project
Moises Bernal, Aaron Gordon, Debajyoti Banerjee

Project Scope
This is a database schema for an online retailer, such as Amazon.com, that sells books, DVDs,
CDs, games, furniture, and garden products. The database will be responsible for tracking
customers (including the billing of customers upgraded to a premium account), customer
payment methods, vendors, products, categories, and customer orders, including shipping
address and total cost for the order.

Entities and Views
The database will track the following entities:

● Customer
Every customer who uses the online store will be modeled as a Customer entity.

● Premium Customer
Customers may subscribe to a premium account for a monthly fee. Premium Customers
will be modeled as a separate Premium Customer entity with a foreign key back to the
Customer table.

● Address
Addresses will be used for both payment methods and shipping invoices. As such, to
achieve normalization, address information will be modelled as an Address entity with a
foreign key linking it to a specific Customer entity.

● Payment
Payment methods (currently we only accept credit cards) will be modeled as a Payment
entity with foreign keys linking it to both a Customer entity and an Address entity, used
as a billing address.

● Vendor
Vendors that distribute the products for sale will be modeled as a Vendor entity.

● Product
Each product available for sale will be modeled as a Product entity with a foreign key
back to the Vendor table.

● Category

Each category available sorted by subcategories (e.g., DVD is found in MEDIA which is
in ROOT) with a foreign key ParentCategoryID back to the same table.

● Invoice
An order that has been placed and ready to be shipped will be modeled as an Invoice
entity with foreign keys linking it to a Customer entity, a Payment entity and an Address
entity, used as a shipping address.

● Line Item
Each invoice may be composed of multiple products, each of which will be modeled as a
Line Item entity with a foreign key linking it to a specific Invoice entity.

In addition to the above entities, the following views will be exposed to assist with potentially
common queries:

● Available Books View
This view will list data for all books in stock (i.e., quantity in stock greater than 0).

● Overdue Customer View
This view will list Premium Customers with a past-due balance.

Stakeholders
There are three primary stakeholders who will benefit from this database:

● Inventory Managers
Employees responsible for managing the store’s inventory will be able to add vendors,
add products and update the quantity of products when vendor shipments arrive.

● Customers
Customers will be able to browse available products, place orders, and have their
previous orders - including payment method and shipping address - saved to the
database.

● Billing
Employees responsible for billing customers with premium accounts will be able to
identify customers with past due payments and update customer credit when payment is
received.

Use Cases
We now present five common use cases that the database supports.

1. Customer Searches Products by Vendor

A customer wants to view all products supplied by a particular vendor (e.g., Pearson)
sorted by category and product name both in ascending order.

2. Inventory Manager Searches Low Stock Products
An inventory manager wants to view which products are low on stock (i.e., where
quantity in stock is ten or less) sorted by quantity in stock in ascending order.

3. Customer Searches for Available Books
A customer uses a storefront client to view records from the Available Books View sorted
by price in ascending order.

4. Customer Views Order Details
A customer wants to view details of an order, including product information for each line
item ordered by line item in ascending order.

5. Billing Sends out Overdue Payment Notices
An employee in billing uses the Overdue Customer view, joined with the Customer table,
to retrieve the email addresses of all customers with an overdue balance

Triggers
The database will have the following triggers:

● store.update_line_item
This trigger will adjust the invoice subtotal, tax amount, and total amount if the total price
of a line item is updated.

● store.delete_line_item
This trigger will adjust the invoice subtotal, tax amount, and total amount if a line item is
deleted.

Interaction with Users
In addition to the use cases, we also provided a catalog website for customers:

● index.html
This page has a link to the browse by vendor page (i.e., findProduct.php).

● findProduct.php
This page displays all the distinct vendors from the vendor table.

● vendorProducts.php

This page displays all the products by the selected vendor.

ER Diagram

